Images of SMC Research 1996

Coordination of Cooperative Agents

F. Arbab

1. INTRODUCTION

The ever decreasing costs and sizes of processors, their ever increasing
speeds, faster and wider-band-width communication links, and global net-
works have made the potential of applying the computational power of sev-
eral (even hundreds and thousands) of processors to a single application, a
reality. Conceptually, the significance of the availability of so many proces-
sors to work on an application goes beyond performance issues.

The mere idea of allocating more than one worker to the same task 1m-
mediately opens up a new problem solving paradigm, and simultaneously,
presents a new challenge. The paradigm is concurrency, and the challenge
1S coordination.

We consider the problem of coordination of very large numbers of con-
current active entities that must cooperate with each other in the context
of a single application. We give a brief problem description and history
in section 2. In section 3 we distinguish between communication and co-
operation, and show the need for a coherent model and language to de-
scribe the cooperation protocols of active entities in massively concurrent
systems. Next two models are compared, the currently most widely used
Targeted-Send/Receive, or TSR model and a new coordination model, Ide-
alized Worker Idealized Manager (IWIM) model. A specific coordination
language [1,2|, called MANIFOLD, that is based on the generic model pro-
posed in section 3 is described in section 4. Some of the interesting features

405

406

F ARBAR

of MANIFOLD are shown through examples in this section. The conclusion
of the paper is in section b.

2. CONCURRENT PROGRAMMINCG

Concurrency is about the expression of a computation as a set of concur-
rent activities. As such, it is a problem solving or a programming paradigm.
Parallelism is about allocating more resources to carry out a given compu-
tation. As such, it is a method for realizing a solution, i.e., to carry out a
computation.

Ot course, the study and the application of concurrency in computer
science has a long history. The study of deadlocks, the dining philosophers,
and the definition of semaphores and monitors were all well established by
the early seventies. However, it is illuminating to note that the original
context for the interest in concurrency was somewhat different than today
111 two respects:

e In the early days of computing, hardware resources were prohibitively
expensive and had to be shared among several programs that had
nothing to do with each other, except for the fact that they were
unlucky enough to have to compete with each other for a share of the
same resources. This was the concurrency of competition.

¢ The falling costs of processor and communication hardware only re-
cently dropped below the threshold where having very large numbers
of ‘active entities’ in an application makes sense. Thus, it is no more
unrealistic to think that a single application can be composed of hun-
dreds of thousands of active entities. This is the concurrency of coop-
eration. Compared to classical uses of concurrency, this is a jump of
several orders of magnitude in numbers, and in our view, represents
(the need for) a qualitative change.

Theoretical work in this area, e.g., m-calculus or process algebra, is still
too fundamental to be used directly in large concurrent applications. On
the other hand, the tried and true models of cooperation, such as client-
server, barrier synchronization, etc., that are used in practical applications
of today are simply a set of ad-hoc, special-case templates; they do not
constitute a coherent paradigm for the definition of cooperation protocols.

We believe there is a clear need for programming models that explicitly
deal with concurrency of cooperation among very large numbers of active
entities that comprise a single application. Such models cannot be built as
extensions of the sequential programming paradigm. Because such applica-
tions can be distributed over a network, we believe such models cannot be
based on synchronous models of concurrency.

CoOopDiaton OF COOPERATIVE AGENTS

3. COMMUNICATION VS. COOPERATION MODELS
It 1s important to distinguish between the conceptual model desceribing the
cooperation of a nuimber ot concurrent processes i an application, and the
underlying model of communication on top of which such cooperation is
implemented [3].

The primary concern in the design of a concurrent application must be
its model of cooperation: how the various active entities comprising the

model must be used to realize whatever model of cooperation application
designers opt for, and the concerns for performance may indirectly affect
their design. Nevertheless, it is important to realize that the conceptual gap
between the system supported cominunication primitives and a concurrent
application must often be filled with a non-trivial model of cooperation.
There 1s no paradigm wherein we can systematically talk about coopera-
tion of active entities, and wherein we can compose cooperation scenarios.
Consequently, programmers must directly deal with the lower-level commu-
nication primitives that comprise the realization of the cooperation model of
a concurrent application. Because these primitives are generally scattered
throughout the source code of the application and are typically intermixed
with non-communication application code, the cooperation model of an ap-
plication generally never manifests itself in a tangible form - i.e., it is not an
identifiable piece of source code that can be designed, developed, debugged,
maintained, and reused, in isolation from the rest of the application code.

3.1. The TSR model of communication

A common characteristic of most flavours of the message passing model of
communication is the distinction between the roles they assign to the two
active entities involved in a communication: the sender and the receiver. A
sender s typically sends a message m to a receiver r. The send operation
is generally targeted to a specific (set of) receiver(s). A receiver r, on the
other hand, typically waits to receive a message m from any sender, as
it normally has no prior knowledge of the origin of the message(s) it may
receive. We use the term Targeted-Send/Receive , or TSR, to refer to the
communication models that share this characteristic.

Consider the following simple example of a concurrent application where
the two active entities (i.e., processes) p and g must cooperate with each
other. The process p at some point produces two values which 1t must pass
on to ¢g. The source code for this concurrent application looks something
like the following:

407

408

F ARBABR

process p: process q:

compute mil receive ml

send m1l to q 1 let 2 be the sender of m1l
compute m?2 receive m?2

send m2 to q compute m using ml and m?2
do other things send m to z

receive m

do other computation using m

L'he first significant point in the above listing is that the communication
concerns are mixed and interspersed with computation. This decreases the
understandability, the maintenability and re-usability of the cooperation
model.

T'he second significant point to note is the need of specifying a target for
the send and the asymmetry between send and receive operations. Targeted
send strengthens the dependence of individual processes on their environ-
ment. This too diminishes the reusability and maintenability of processes.
In this model, debugging and proving programs correct are also not trivial:
a process 18 not a well-encapsulated concept into this model, it sometimes
needs the existence of some other valid processes to be valid.

3.2. The IWIM model of communication

In the following, we consider an alternative generic model of communication
that, unlike the TSR model, supports the separation of responsibilities and
encourages a weak dependence of workers (processes) on their environment.
We refer to this generic model as the Idealized Worker Idealized Manager
(IWIM) model.

T'he basic concepts in the IWIM model are processes, events, ports, and
cnannels. A process is a black boxr with well-defined ports of connection
through which it exchanges wunits of information with the other processes
in 1ts environment. A port is a named opening in the bounding walls of a
process through which units of information are exchanged using standard
[/O type primitives analogous to read and write. Without loss of generality,
we assume that each port is used for the exchange of information in only
one direction: either into (input port) or out of (output port) a process. We
use the notation p.i to refer to the port 7 of the process instance p.

The interconnections between the ports of processes are made through
channels. A channel connects a (port of a) producer (process) to a (port of
a) consumer (process). We write p.o—q.i to denote a channel connecting
the port o of the producer process p to the port ¢ of the consumer process
q.

Independent of the channels, there is an event mechanism for information

exchange in IWIM. Events are broadcast by their sources in their environ-
ment, vielding an event occurrence.

The IWIM model supports anonymous communication: in general, a pro-
cess does not, and need not, know the identity of the processes with which
1t exchanges information. This concept reduces the dependence of a process
on 1ts environment and makes processes more reusable.

A process in IWIM can be regarded as a worker process or a manager (or
coordinator) process. The responsibility of a worker process is to perform
a (computational) task. A worker process is not responsible for the com-
munication that is necessary for it to obtain the proper input it requires to
perform its task, nor is it responsible for the communication that is neces-
sary to deliver the results it produces to their proper recipients. In general,
no process wn IWIM 1s responsible for its own communication with other
processes. It 1s always the responsibility of a manager process to arrange
for and to coordinate the necessary communications among a set of worker
processes.

T'here i1s always a bottom layer of worker processes, called atomic workers,
in an application. In the IWIM model, an application is built as a (dynamic)
hierarchy of (worker and manager) processes on top of this layer. Note that
a manager process may itself be considered as a worker process by another
manager process. Let us reconsider the example in subsection 3.1., and
see how 1t can be done in the IWIM model. A new process ¢ responsible
to facilitate the communication has been created. The source code looks
something like the following:

process p: process q: process c:

| |

| compute ml read ml from input port il
write ml to output port ol read m2 from input port i2 create the channel p.ol —>q.il
compute m?2 compute m using ml and m?2 create the channel p.02 —»q.12
write m2 to output port o2 write m to output port ol create the channel q.01l —p.il
do other things
read m from input port il

| do other computation using m :

In this example, the responsibility of the coordinator process c 1s, very
simple: perhaps, it first creates the processes p and ¢, establishes the com-
munication channels defined above, and then may wait for the proper con-
dition (e.g., termination of p and/or ¢) to dismantle these channels and
terminate itself.

Nevertheless, moving the communication concerns out of p and ¢ and into
¢ already shows some of the advantages of the IWIM model. The processes

409

410

F. ARBAR

p and q are now ‘ideal’ workers. They do not know and do not care where
their input comes from. nor where their output goes to. They know nothing
about the pattern of cooperation in this application; they can just as easily
be incorporated in any other application, and will do their job provided that
they receive ‘the right’ input at the right time. The cooperation model of
this application is now explicit: it is embedded in the coordinator process c.
It we wish to have the output of ¢ delivered to another process, or to have
yet another process deliver the input of p, neither p nor ¢, but only ¢ is to
be modified.

The process ¢ is an ‘ideal” manager. It knows nothing about the details
of the tasks performed by p and ¢. Its only concern is to ensure that they
are created at the right time, receive the right input from the right sources,
and deliver their results to the right sinks. It also knows when additional
new process imstances are supposed to be created, how the network of com-
munication channels among processes must change in reaction to significant
event occurrences, etc. (none of which is actually a concern in this simple
example).

Removing the communication concerns out of worker processes enhances
the modularity and the re-usability of the resulting software. Furthermore,
the fact that such ideal manager processes know nothing about the tasks
performed by the workers they coordinate, makes them generic and re-
usable too. The cooperation protocols for a concurrent application can be
developed modularly as a set of coordinator processes. It is likely that some
of such ideal managers, individually or collectively, may be used in other
applications, coordinating very different worker processes, producing very
different results; as long as their cooperation follows the same protocol,
the same coordinator processes can be used. Modularity and re-usability
of the coordinator processes also enhances the re-usability of the resulting
software.

4. MANIFOLD
In this section, we briefly introduce MANIFOLD: a coordination language
for managing complex, dynamically changing interconnections among sets
of independent, concurrent, cooperating processes (2|, which is based on the
IWIM model, described 1n subsection 3.2.

T'he MANIFOLD system consists of a compiler, a run-time system library,
a number of utility programs, and libraries of built-in and predefined pro-
cesses |4]. A MANIFOLD application consists of a (potentially very large)
number of processes running on a network of heterogeneous hosts; some of
which may be parallel systems. Processes in the same application may be
written in different programming languages. Some of them may not know
anything about MANIFOLD, nor the fact that they are cooperating with
other processes through MANIFOLD in a concurrent application.

COORDIATON OF COOPERATIVE ACENTS

The library routines that comprise the interface between MANIFOLD and
processes written in other languages (e.g., ('), automatically perform the
necessary data format conversions when data is routed between various
different machines.

4.1. Processes

The atomic workers of the TWIM model are called atomic processes in
MANIFOLD. Any operating system-level process can be used as an atomic
process 11 MANIFOLD. However, MANIFOLD also provides a library of
functions that can be called from a regular C function running as an atomic
process, to support a more appropriate interface between the atomic pro-
cesses and the MANIFOLD world. Atomic processes can only produce and
consume units through their ports, generate and receive events, and com-
pute. In this way, the desired separation of computation and coordination
1s achieved.

Coordination processes are written in the MANIFOLD language and are
called manifolds. The MANIFOLD language is a block-structured, declara-
tive, event driven language. A manifold definition consists of a header and
a body. The header of a manifold gives its name, the number and types
of its parameters, and the names of its input and output ports. The body
of a manifold definition is a block. A block consists of a finite number of
states. Each state has a label and a body. The label of a state defines the
condition under which a transition to that state is possible. It 1s an expres-
sion that can match observed event occurrences in the event memory of the
manifold. The body of a simple state defines the set of actions that are to
be performed upon transition to that state. The body of a compound state
is either a (nested) block, or a call to a parameterized subprogram known
as a manner in MANIFOLD. A manner consists of a header and a body. As
for the subprograms in other languages, the header of a manner essentially
defines its name and the types and the number of its parameters. A man-
ner is either atomic or regular. The body of a regular manner is a block.
The body of an atomic manner is a C function that can interface with the
MANIFOLD world through the same interface library as for the compliant
atomic processes.

4.2. Streams

The asynchronous communication channels in MANIFOLD are called streams.

A stream has an infinite capacity that is used as a FIFO queue, enabling
asynchronous production and consumption of units by its source and sink.
The sink of a stream requiring a unit is suspended only if no units are avail-
able in the stream. The suspended sink i1s resumed as soon as the next
unit becomes available for its consumption. The source of a stream 1s never
suspended because the infinite buffer capacity of a stream is never filled.

411

412

F. ARBAB

Note that as in the IWIM model, the constructor of a stream between two
processes 18, 1n general, a third process. Stream definitions in MANIFOLD
are generally additive. This means that a port can simultaneously be con-
nected to many different ports through different streams. The flows of
information units in streams are automatically replicated and merged at
outgomng and incoming port junctions, as necessary. Thus, a unit placed
Into a port that is connected to more than one outgoing streams is dupli-
cated automatically, with a separate copy placed into each outgoing stream.
Analogously, when a process attempts to fetch a unit from a port that is
connected to several incoming streams, it obtains the first unit available in
a non-empty imcoming stream, selected non-deterministically.

4.3. BRvents

In MANIFOLD, once an event is generated by a process, it continues with its
processing, while the event occurrence propagates through the environment
independently. Any receiver process that is interested in such an event
occurrence will automatically receive it in its event memory. The observed
event occurrences 1 the event memory of a process can be examined and
reacted on by this process at its own leisure. The event memory of a process
behaves as a set: there can be at most one copy of the occurrence of the
same event generated by the same source in the event memory. If an event
source repeatedly generates an event faster than an observer reacts on that
event occurrence, the event memory of the observer induces an automatic
sampling effect: the observer detects only one such event occurrence.

4.4. State transitions

The most important primitive actions in a simple state body are: create and
activate processes, generate event occurrences, and connect streams between
ports of various processes. Upon transition to a state, the actions specified
in 1ts body are performed atomically in some non-deterministic order. Then,
the state becomes preemptable: if the conditions for transition to another
state are satisfied, the current state is preempted, meaning that all streams
that have been constructed are dismantled and a transition to a new state
takes place. This event-driven state transition mechanism is the only control
mechanism in the MANIFOLD language. More familiar control structures,
such as the sequential flow of control represented by the connective *;’ (as in
Pascal and C), conditional (i.e., ‘if’) constructs, and loop constructs can be
built out of this event mechanism, and are also available in the MANIFOLD
language as convenience features.

4.9. BExample: Fibonacct series
It 1s beyond the scope of this paper to present the details of the syntax and
semantics of the MANIFOLD language. However, because MANIFOLD is not

COORDINATION OF COOPERATIVE AGENTS

very similar to any other well-known language, 1 this section we present a
simple example to illustrate its features and the capabilities. The purpose
of the program shown below is to print the Fibonacci series, defined as:
f()y=1, f(2) =2, f(n)=f(n—1)+ f(n—2), for n > 2.

The first line of this code defines a manifold named PrintUnits that
takes no arguments, and states (through the keyword import) that the
real definition of its body is contained in another source file. This defines
the ‘interface’ to a process type definition whose actual ‘implementation’ 1s
given elsewhere. Whether the actual implementation of this process is an
atomic process (e.g., a C function) or it is itself another manifold 1s indeed
irrelevant in this source file. We assume that PrintUnits waits to receive
units through its standard input port and prints them. When PrintUnits
detects that there are no incoming streams left connected to its input port
and 1t has done printing the units i1t has received, 1t terminates.

In this program, we use two other imported manifolds: variable and
sum. The manifold variable reads units from its input port, and produces
a copy of the most recent received unit whenever a stream is connected to
its output port. The parameter specifies an initial value.

In the specification of sum there is a new linguistic element. In addition
to the default ports that all manifolds have, this manifold has two input

ports named x and y. The interface declaration of sum, thus, contains the
declarations for these ports.

manifold PrintUnits() import.
manifold variable(port in) import.
manifold sum(event)

port 1n Xx.

port 1n y.

import.
event overflow.

auto process v0 is variable(0). 413
auto process vl is variable(1).

auto process print is PrintUnits.

auto process sigma is sum(overflow).

manifold Main()
{

begin: (vO — sigma.x, vl — sigma.y, vl — v0, sigma — v1, sigma — print).
overflow.sigma: halt.

}

An instance of sum reads a pair of units, one from each of its input ports
x and vy, verifies that they contain numeric values, adds them together, and
produces the result in a unit on its output port. It then tries to obtain a new
pair of input units to produce their sum, and continues to do so indefinitely,
as long as its input ports are still connected to incoming streams. If a pair of

414

F ARBAR

Input values are so large that their addition causes an overflow, sum produces
a special error unit on its output and generates the event overflow. Next.
1s the declaration of overflow as an event.

The following four lines define new instances of the manifolds variables.
PrintUnits, and sum, and state (through the keyword auto) that these
process mstances are to be automatically activated upon creation, and de-
activated upon departure from the scope wherein it is defined; in this case,
this 1s the end of the application. Because the declaration of the process
Istance print appears outside of any blocks in this source file, it is a global
process, known by every instance of every manifold whose body is defined
in this source file.

IT'he last lines of this code define a manifold named Main that takes no pa-
rameters. Every manifold definition (and therefore every process instance)
always has at least three default ports: input, output, and error. The
definition of these ports are not shown in this example, but the ports are
defined for Main by default. The body of this manifold is a block (enclosed
In a pair of braces) and contains only a single state. The name Main is
indeed special in MANIFOLD: there must be a manifold with that name in
every MANIFOLD application and an automatically created instance of this
manifold, called main, is the first process that is started up in an application.
Activation of a manifold instance automatically generates an (internal) oc-
currence of the special event begin in the event memory of that process
Istance; in this case, main. This makes the initial state transition possible:
main enters its only state---the begin state.

Figure 1 shows the connections made among various processes in the
begin state of main. In order to understand how our set of connections
produces the Fibonacci series, we consider the sequence of units that flow
through each stream. Let o be the sequence of units produced through the
output port of the process sigma. Clearly, this is the sequence of units
printed by print, and we want to show that it is indeed the Fibonacci
series.

The sequence of units that show up at the input port of v1 is, obviously.

ol 1 —
vO I IO X

_ . a
O vl 1Y

Figure 1. The Fibonacci series.

CoooRpIaloON OF COOPERATIVE AGENTS

. This means that the sequence of units produced through the output
port of vl consists of ‘1’ (the initial value of v1) followed by a. This same
sequence shows up at the input port of vO and at the port y of sigma. It
follows that the sequence of units produced through the output port of vO
(which shows up at the x port of sigma) consists of ‘0" (the initial value of
v0), followed by ‘1°, followed by «.

Now, observe that the first pair of units that arrive at the ports x and
y of sigma contain respectively, ‘0" and ‘1’. Thus, by the definition of sum
(of which sigma is an instance), the first unit in v contains ‘0 + 1°, i.e., ‘1’
Therefore, the second pair of units that arrive at the ports x and y of sigma
contain respectively, ‘1" and ‘1’ (the first unit in «). Hence, the second unit
In « contains ‘1 4+ 17, 1.e., ‘2’. The third pair of units that arrive at the ports
x and y of sigma contain respectively, ‘1’ (the first unit in «) and ‘2’ (the
second unit in «), which produces a ‘3’ for the third unit in .

T'his configuration of processes will continue to produce the Fibonacci
numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, etc., until sigma encounters an overflow.
In reaction to the occurrence of the event overflow generated by sigma,
main makes a transition to its corresponding state. The transition out of
the begin state preempts (i.e., breaks up) its stream connections. Both
sigma and print terminate as soon as they detect they have no incoming
streams. T'he transition into the new state executes the action halt., which
terminates the main process.

T'his simple example shows the power of the ‘plumbing paradigm’ that
1s the basis of IWIM and MANIFOLD. What is not demonstrated in this
examnple 1s the dynamic capabilities of MANIFOLD: that processes can be
dynamically created and deleted, and the topology of their interconnecting
streams can dynamically change in reaction to the events of interest. Some
such examples are presented elsewhere, e.g., in [2, 3].

Separation of computation from communication concerns which is en-
forced by MANIFOLD leads to separate modules for computation and co-
ordination of communication. This enhances the re-usability of modules,
especlally, that of the communication modules which are the most com-
plex and time consuming parts of a parallel/distributed application. As
a concrete example of this notion of re-usable coordinator modules, it is
worth mentioning that a MANIFOLD program written to implement a par-
allel /distributed bucket sort algorithm was later used, with no change, to im-
plement a single-grid domain decomposition numerical algorithm. It turned
out that, although the computations performed in the sort and the domain
decomposition problems are very different, the coordination models they
required were exactly the same. Furthermore, extension of the domain de-
composition problem to the multi-grid case, required only a small change
(the addition of a feed-back stream) to this coordinator module.

No modification to any source code is necessary when a MANIFOLD ap-

415

416

F ARBAR

plication is to run on a single processor machine, a multiprocessor machine,
or on a (homogeneous or heterogeneous) network of such machines.

5. CONCLUSION

In this paper, we illustrate the shortcomings of the direct use of communi-
cation models that are based on ‘Targeted-Send/Receive’ primitives in large
concurrent applications. We argue that there is an urgent need for practical
models and languages wherein various models of cooperation can be built
out of simple primitives and structuring constructs.

We present the IWIM model as a suitable basis for control-oriented co-
ordination languages. The significant characteristics of the IWIM model
include compositionality, which it inherits from data-flow, anonymous com-
munication, and separation of computation concerns from communication
concerns. These characteristics lead to clear advantages in large concurrent
applications.

MANIFOLD 18 a specific coordination language based on the IWIM model.
MANIFOLD uses the concepts of modern programming languages to de-
scribe and manage connections among a set of independent processes. The
unique blend of event driven and data driven styles of programming, to-
gether with the dynamic connection graph of streams seem to provide a
promising paradigm for concurrent systems. The emphasis of MANIFOLD
1s on orchestration of the interactions among a set of autonomous agents,
each providing a well-defined segregated piece of computation, into an inte-
grated concurrent system for accomplishing a larger task.

The MANIFOLD system runs on multiple platforms. Presently, it runs on
IBM RS6000, IBM SP1/2, HP, SUNOS, Solaris, and SGI IRIX. Linux and
Cray Unicos ports are under way, and other ports are planned. Our present
and future work involving MANIFOLD includes completion of a visual pro-
gramming and debugging environment we are developing for MANIFOLD,
and using MANIFOLD in industrial High Performance Computing applica-
tions.

REFERENCES
1. D. GELERNTER, N. CARRIERO (1992). Coordination languages and
their significance. Communications of the ACM 35, 97-107.

2. F. ARBAB, I. HERMAN, P. SPILLING (1993). An overview of manifold
and 1ts implementation. Concurrency: Practice and Exrperience 5, 23-
70.

3. F. ARBAB (1995). Coordination of Massively Concurrent Activities,
CWI report CS-R9564, Amsterdam.

4. F. ARBAB (1995). Manifold Version 2: Language Reference Manual,
Tech. Rep. preliminary version, CWI Amsterdam.

